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Here, we present a qualitative study of beam loading effects for a partially filled Main Ring, where
individual bunches are interacting with their environment via wake fields generated by the fundamental and
higher parasitic cavity modes. We employ previously derived! simple analytic formula, which describes the
beam loading force acting on a given bunch within the train, as a function of the resonant frequency, ,, and
the quality factor of the coupling impedance, Q, (a single Lorentzian peak). The Main Ring coupling
impedance — measured for individual r.f. cavities? — is defined as a superposition of many Lorentzian pcaks,
which makes our analytic formula especially suitable to calculate the net beam loading force experienced by
each bunch. The resulting formula reveals resonant frequency regions in the vicinity of the integer multiples
of the r.f, frequency, where the beam loading response is equal for all bunches (its absolute value scales as
the total number of bunches in the train, M). It also identifies the second set of characteristic resonant
frequencies, spaced by the multiples of o, /M, at which the beam loading force is not only bunch
independent, but it is also suppressed by the factor of Q2. This formalism gives one an insight into
various optimizing schemes; ¢.g. 0 modify the detuning of the fundamental mode, or the existing
configuration of the parasitic cavity resonances, so that the resulting beam loading force experienced by each
bunch is minimized and it is of similar magnitude for all bunches.

*Operated by the Universities Research Association, Inc., under a contract with the U.S. Department of Energy



1. INTRODUCTION - MAIN RING IMPEDANCE

A fully populated storage ring is rarely the case for an operational mode of a realistic synchrotron.
As a beam is injected and extracted to and from a storage ring there is usually a gap of missing bunches to
accommodate injection/extraction devices {even a small gap breaks down the symmetry of a conpled multi-
bunch motion). Here, we will discuss an ¢xtremely non-symmetric situation, often encountered in high

energy colliders, where a relatively short train of bunches is being accelerated in a long storage ring.

We present a quantitative treatment of the beam loading effects in the Main Ring for a typical
configuration of M =11 consecutive full buckets in a storage ring of the harmonic number N = 1113, The
net beam loading force experienced by each bunch! is calculated for a realistic cavity impedance, derived
from a measurement?, which includes the fundamental and higher parasitic cavity modes. The fundamental
part of the longitudinal coupling impedance, 7,{®), combines the fundamental modes of 17 r.f. cavitics into
a single Lorentzian at o = Nay (f; = 53 MHz), with the quality factor of Q = 2000 and the net shunt
impedance of R = 4 x 10° Ohm. Figure 1 summarizes the longitudinal coupling impedance, Z,(®), at higher
frequencies. Around the fourth harmonic of the r.f. frequency, Z,, is represented by a cluster of parasitic
modes detected in 12 out of 17 r.f. cavities (the fourth harmonic mode was not present for the remaining 5
cavities)?. The resonant frequencies were measured for the individual 1.f. cavities (they are collected in the
table inserted into Figure 1). Each responding cavity-contributes-a Lorentzian at respective @p, with @ =
300 and R = 3.5 x 10* Ohm. One can see in Figure 1 two additional clusters of parasitic modes at lower
frequencics (around the second harmonic of the rf, frequency) with the measured signal at least order of
magnitude smaller? than the fourth harmonic lines. These weak parasitic modes will not be included into

our model impedance,

In summary, the Main Ring coupling impedance — measured for individual r.f. cavities? — is deflined

as a superposition of many Lorentzian peaks, which makes our analytic formula especially suitable to



calculate the net beam loading force experienced by each bunch. One can use the above formalism 1o
optimize detuning of the fundamental mode and the existing configuration of higher parasitic modcs to

increase the stability of multi-bunch motion.



2. COUPLED MULTI-BUNCH MOTION - BEAM LOADING

We consider a storage ring of the harmonic number N, which is populated by a train of M
consecutive bunches (M < N), Collective synchrotron motion (the dipole mode) of M bunches coupled via

wake fields can be described by the following set of equations of motion?
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Here W’ is the time derivative of the wake function, 1 is the revolution frequency dispersion function, ¢ is
the velocity of light, ry is the classical proton radius, ©g is the revolution frequency and Ty is the

revolution period.

One can identify the first term in the right hand side of Eq.(2.1) with the beam loading force, which

drives the n-th bunch. It explicitly depends on the bunch index n and it is given by the following formula®
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Furthermore, the perturbed synchrotron frequency, w,, in Eq.(2.1) includes the incoherent tunc shift
correction due to the potential well distortion. The last term in the right hand side of Eq.(2.1) represents

pure coherent multi-bunch coupling, which may result in the coupled bunch instability.

The time derivalive of the wake function is related to the longitudinal impedance via the inverse

Fourier transform as follows?
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To express the heam loading force in terms of the coupling impedance one can substitute Eq.(2.3) into
Eq.(2.2). Summing over the bunch index, m, yields the following formula’
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Assuming general form of the longitudinal impedance of a resonant structure, given by the following

standard Lorentzian:

Z,(@) = R . Qe»1 2.5)
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where R is the shunt impedance, (Q is the quality factor of the resonator and «, is its resonant frequency, one

can evaluate Eq.(2.4) explicitly via contour integration technigue!. The resulting general expression is given

as follows

Lot 1 . 0]
M (N‘%) - EN sm(N—m:)

AcRo i 2

fn= < (Nm ) 8 2 +

T ¢ 3 sinz(%) + (%) 82

(2.6)
qm(;ful;; sin %M)cos ;D:jo(h - M- 1)) 5 .
- = 1
2 ™ N2 2 ’ 29~

sin (Nmo) + (N“’o) 3 Q

Denoting the expression in curly bracket by ?n, one can introduce a dimensionless beam loading force.
Figure 2 illustrates a family of curves for different values of n, calculated according to Eq.(2.6). As

discussed in Ref.1, Eq.(2.6) has a simple asymptotics for the resonant frequencies, w,, in the vicinity of the



integer multiples of the r.f. frequency, kNw,, and away from them. These two asymptotic regions are
determined by the relative strength of the expressions appearing in the denominator of Eq.(2.6), namely:
sinz(nx) and (ﬂtx)2 82. It is convenient to introduce a dimensionless resonant frequency, x, (in units of the

r.f. frequency) namely,

2.7

Now, ‘the immediate vicinity of the integer multiple of the r.f. frequency’ is defined by the following

inequality
sin(nx) << (nx)* &7, (2.8)
which can be rewritten into the following simple form
|x - k| <<k6 . (2.9)

The remainder of the frequency domain, namely resonant frequencies given by

|x - k| >> ké (2.10)

are considered to be ‘away from the multiples of the r.f. frequency’ — the inequality given by Eq.(2.8)

reversed.

Applying the above asymptotics, Fqs.(2.7)(2.10), to Eq.(2.6) (neglecting either sinz(nx) or (nx)2

&, term in the denominator) reduces Eq.(2.6) to the following simple expression
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Figure 3 illustrates a comparison between the exact formula, -t-'n(x), Eq.(2.6), and its asymptotic version,
given by Eq.(2.11). One can notice, that for the resonant frequencies in ‘the immediate vicinity of the
integer multiple of the r.f, frequency’ (the first asymptotic region in Eq.(2.11)) the resulting pegm {oading
Jforce does not depend on the bunch index, n, and it is governed by the quality factor, Q. Conversely, for the
resonant frequencies ‘away from the immediate vicinity of the integer multiple of the r.f. frequency’ (the

second asymplotic region in Eq.(2.11)) the resulting beam loading force does not depend on the quality

factor, Q, and it is governed strictly by the bunch index, n. Therefore, for parasitic modes at resonant
frequencies ‘away from the immediate vicinity of the integer multiple of the r.f, frequency’, which is
usually the case, the so called ‘de-Q-ing’ of the modes does not have any effect on the beam loading forces

experienced by individual bunches (see Eq.(2.11)).

Furthermore, the structure of Eq.(2.11) (zeros of sin{mxM}) reveals another finer level of symmeltry
£
governed by the fractional, IVE multiples of Nw,. Indeed, as seen in Figure 4, the beam loading force

vanishes up 10 terms of Of 87}, for a discrete set of resonant frequencies defined by

¢
®, = (k + ﬁ) No,, £=12.M-1. (2.12)

These resonant frequencies are clearly marked in Figure 4 (arrows). Similarly, one can find frequency regions
where bunch-to-bunch variation of the beam loading force is the strongest — they are defined by the

extremes of sin(xM), which is also illustrated in Figure 4,

2.11)



3. BEAM LOADING FORCE — NUMERICAL EXAMPLE

The Main Ring coupling impedance is represented as a superposition of many Lorentzian peaks (one
fundamental mode plus 12 higher parasitic modes deseribed in Figure 1),which makes our asymptotic
formula, Eq.(2.11), especially suitable to calculate the net beam loading force experienced by each bunch.
The fundamental mode, by definition, is right at the first harmonic, or perhaps slightly detuned (o stabilize
Robinson instability, Therefore, the first asymptotic region in Eq.(2.11) will apply. One can use the above
formalism to optimize detuning of the fundamental mode and the existing configuration of higher parasitic
modes to increase the stability of multi-bunch motion. Assuming the same R/AQ ratio for the fundamental
and all higher parasitic modesz, one can express the beam loading force due to the fundamental mode (bunch
index independent) by the following simple fonnula

~y fund 17 qund
(f) =5 M U™ 52, (3.1)

providing that the fundamental frequency detuning, A, is very small

mrf
A << —26 . (3.2)

Figure 5 shows a family of beam loading curves for individual bunches in the resonant frequency
region, which contains all 12 parasitic cavity modes. Their resonant frequencies are marked by arrows. One
can see, that the resonant frequencies of all 12 parasitic modes are ‘away from the immediate vicinity of the
integer multiple of the r.f. frequency’, therefore the second asympiotic region in Eq.(2.11) will apply. The

Q-independent beam loading force is given by the following formula

(?n)m = i Fx) . (3.3)
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Figure 6 summarizes values of (f n) for all 11 bunches. One can see from Figure 6, that the total
bunch-to-bunch spread of the beam loading lorce is equal to about 14 of our dimensionless units, which is

quite a substantial effect (about 27% of the beam loading force due to the fundamental maoude).



4. SUMMARY

The starting simple asymptotic formula, which describes the beam loading force experienced by a
given bunch, as a function of the resonant frequency, a,, and the quality factor, (Q, of a simple Lorentzian
impedance is employed to study beam loading effects for a realistic (measured) configuration of cavity
resonance. As was demonstrated in this paper, one can get immediately a simple quantitative answer in
terms of the beam loading experienced by each bunch along the train. Superimposing many parasitic cavity
modes one can use the above formulas to choose appropriate tuning of existing configuration of parasitic
modes to minimize the beam loading formalism reveals resonant frequency regions in the vicinity of the
integer multiples of the r.f. frequency, Nw,, where the beam loading response is equal for all bunches (its
absolute value scales as M}). The complimentary asymptotic region, ‘away from the immediate vicinity of
the integer multiple of the r.f. frequency’ is especially relevant for studying beam loading effects due to
higher order parasitic cavity modes. The resulting peam loading force does n the guali
Q. and it is governed strictly by the bunch index, n. The formula also identifies the second set of
characteristic resonant frequencics, spaced by the multiples of Nw,/M, at which the beam loading force is
nol only bunch independent, but also considerably smaller (suppressed by the factor of Q2). Similarly, our
analytic formula identifies frequency regions, where bunch-to-bunch variation of the beam loading force is
the strongest (e, at odd multiples of Nw,/2M). Presented numerical example gives one an insight into
various optimizing schemes; e.g. o modify the existing configuration of parasitic cavity resonances, or [0
change number of bunches in the train, so that the resulting bunch-to-bunch spread of the beam loading

force is minimized, which could be instrumentai in stabilizing multi-bunch motion.
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FIGURE CAPTIONS

Figure 1.

Figore 2.

Figure 3.

Figurc 4.

Figure 5.

Figure 6.

Measured longitudinal coupling impedance, Z, (), at higher frequencies. A cluster of 12 parasitic
modes around the fourth harmonic of the r.f. frequency (detected in 12 out of 17 r.f. cavities).
Each cavity contributes a Lorenizian at respective @, with Q = 300 and R = 3.5 x 10" Ohm.
Two additional clusters of parasitic modes at lower frequencies with the measured signal at least

order of magnitude smatler? than the fourth harmonic lines.

Dimensionless beam loading force, 't:,l, acting on the n-th bunch as a function of the resonant

frequency, m,, of the coupling impedance.

Asymptotics of the dimensionless beam loading force, fn, acting on the 0-th bunch for resonant
frequencies, w, , at the ‘immediate vicinity’ and ‘away ' from the multiples of the r.f.

frequency.

Dimensionless beam loading force, 'fn, acting on the n-th bunch for resonant frequencies, @,
‘away from the immediate vicinity’ of the multiple of the r.f. frequency. The beam loading
;

force vanishes for a discrete set of resonant frequencies defined by the fractional, M + multiples of

No

0"

A family of beam loading curves for individoal bunches in the resonant frequency region,
containing all 12 parasitic cavity modes (marked by arrows), The resonant frequencies of all
parasitic modes are ‘away from the immediate vicinity of the integer muitiple of the r.f.

Jrequency’ — the Q-independent asymptotic for the beam loading force will apply.

~ YDara
The net beam loading force, (fn) , for all 11 bunches. The total bunch-to-bunch spread of

the beam loading force is equal to about 14 dimensionless units.
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